$\gamma = 101.156 \ (1)^{\circ}$

Mo $K\alpha$ radiation

 $0.10 \times 0.10 \times 0.10 \; \mathrm{mm}$

12387 measured reflections

5703 independent reflections

4738 reflections with $I > 2\sigma(I)$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 153 K

 $R_{\rm int} = 0.014$

Z = 2

V = 1263.00 (8) Å³

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2',2"-(Nitrilotrimethylene)tris(1*H*-benzimidazol-3-ium) trinitrate

Yi Cui

School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China Correspondence e-mail: yicui163@163.com

Received 22 January 2011; accepted 31 January 2011

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.103; data-to-parameter ratio = 13.8.

In the title compound, $C_{24}H_{24}N_7^{3+}\cdot 3NO_3^{-}$, the cation exhibits a distorted propeller-like conformation in which the benzimidazolium fragments form dihedral angles of 9.4 (1), 10.7 (1) and 19.1 (1)° with each other. In the crystal, intermolecular N– H···O hydrogen bonds link cations and anions into double ribbons propagated in [100]. Weak intermolecular C–H···O interactions further consolidate the packing.

Related literature

A blue-emitting LED device fabricated with the tris(2aminoethyl)amine cerium complex was reported by Zheng *et al.* (2007). For the crystal structures of related tris(1*H*-benzimidazol-2-ylmethyl)amine adducts with H₂O and 1.5H₂O-0.5MeOH·MeCN, see: Zhang *et al.* (2005).

Experimental

Crystal data

$C_{24}H_{24}N_{7}^{3+}\cdot 3NO_{2}^{-}$	
$M_{\rm a} = 596.53$	
Triclinic P1	
a = 8.9493 (3) Å	
b = 9.2209(3) Å	
c = 15.8027 (6) Å	
$\chi = 98.438 (1)^{\circ}$	
$\beta = 91.910 (1)^{\circ}$	

Data collection

Bruker SMART 1K CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.972, T_{max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.103$ S = 1.095703 reflections 413 parameters 6 restraints

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N\cdots O4^{i}$	0.87 (2)	1.95 (2)	2.8147 (15)	176 (2)
$N2 - H2N \cdots O8$	0.87(2)	1.94 (2)	2.7891 (15)	167 (2)
$N3 - H3N \cdot \cdot \cdot O4^{i}$	0.88 (1)	1.87 (1)	2.7382 (15)	172 (2)
$N2 - H2N \cdots O9$	0.87(2)	2.56 (2)	3.2396 (16)	136 (2)
$N5-H5N\cdots O3$	0.88 (2)	1.77 (2)	2.6477 (15)	175 (2)
$N4 - H4N \cdots O5$	0.86(1)	2.10 (2)	2.8793 (16)	150 (2)
$N4 - H4N \cdots O6$	0.86(1)	2.52 (1)	3.3127 (18)	153 (2)
$C5-H5A\cdots O9$	0.95	2.54	3.2922 (18)	136
$C8-H8A\cdots O2^{ii}$	0.99	2.32	3.2585 (17)	159
$C9 - H9B \cdots O2^{ii}$	0.99	2.47	3.2500 (16)	135
$C13-H13A\cdots O3^{iii}$	0.95	2.52	3.2240 (18)	131

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) -x + 1, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

This work was supported by the NSF of Shandong Province (grant No. 2009ZRA02071), the Doctoral Science Foundation of Shandong Province (grant No. 2007BS04023) and the Project of Shandong Province Higher Educational Science and Technology Program (No. J09LB53).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5044).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, X.-L., Zheng, S.-R., Liu, Y.-R., Zheng, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, 0533-0536.

Zheng, X. L., Liu, Y., Pan, M., Lu, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399–7403.

Acta Cryst. (2011). E67, o625-o626 [doi:10.1107/S160053681100393X]

2,2',2''-(Nitrilotrimethylene)tris(1H-benzimidazol-3-ium) trinitrate

Y. Cui

Comment

The tripodal ligands derived from the Schiff-base condensation with tris(2-aminoethyl)amine (H₃ntb) are of particular interest since the benzimidazole ring in a terpyridine-like ligand allows easy derivation and incorporation in segmental di- and trileptic ligands used as building blocks in self-assembling processes (Zheng *et al.*, 2007). A blue-emitting LED device was fabricated using one ntb cerium complex (Zheng *et al.*, 2007). In the corresponding ntb adduct [ntb.H₂O and ntb.1.5H₂O.0.5MeOH.MeCN] (Zhang *et al.*, 2005).the ntb adopts a tripodal 'mode to form hydrogen bonds with a solvent water molecule *via* N—H···O and O—H···N hydrogen bond. As a part of our study of the assembly of supramolecular aggregates with ntb-related compounds, we report here the synthesis and crystal structure of the title compound (I).

In (I) (Fig. 1), the three free N atoms were all pronated, and ntb adopts a tripodal mode to form strong N—H···O hydrogen bonds (Table 1) with O atoms of three nitrate anions building the 1-D chains along the *a* axis. In the cation, three benzimidazole rings form in pairs the dihedral angles in the region 9.4 (1) to 19.1 (1)°. There are also some weak C—H···O inter- and intramolecular interactions, which further stabilize the structure of (I).

Experimental

Tris(2-aminoethyl)amine was prepared from the condensation reaction between nitrilotriacetate and 1,2-diaminobenzene in diethylene glycol (yield 73%). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation from a 50% nitric acid solution at room temperature.

Refinement

C-bound H atoms were geometrically positioned with C—H distances of 0.93–0.97 Å. and refined as riding, with $U_{iso}(H) = 1.2 U_{eq}(C)$. N-bound H atoms were located in difference Fourier maps and refined isotropically, with N—H bond length restrained to 0.87 (2) Å.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. N—H…O hydrogen bonds are shown by dashed lines.

2,2',2"-(Nitrilotrimethylene)tris(1H-benzimidazol-3-ium) trinitrate

Crystal data

$C_{24}H_{24}N_7^{3+}\cdot 3NO_3^{-}$	Z = 2
$M_r = 596.53$	F(000) = 620
Triclinic, <i>P</i> T	$D_{\rm x} = 1.569 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 8.9493 (3) Å	Cell parameters from 520 reflections
b = 9.2209 (3) Å	$\theta = 10-14^{\circ}$
c = 15.8027 (6) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 98.438 (1)^{\circ}$	T = 153 K
$\beta = 91.910 \ (1)^{\circ}$	Block, colorless
$\gamma = 101.156 \ (1)^{\circ}$	$0.10\times0.10\times0.10\ mm$
$V = 1263.00 (8) \text{ Å}^3$	

Data collection

Bruker SMART 1K CCD diffractometer	5703 independent reflections
Radiation source: fine-focus sealed tube	4738 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.014$
Thin–slice ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -11 \rightarrow 11$
$T_{\min} = 0.972, T_{\max} = 0.985$	$k = -11 \longrightarrow 11$
12387 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.103$	$w = 1/[\sigma^2(F_o^2) + (0.052P)^2 + 0.4262P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
5703 reflections	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
413 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0084 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.09657 (13)	0.85873 (13)	0.28627 (8)	0.0368 (3)
O2	0.22174 (12)	1.06093 (11)	0.36368 (7)	0.0297 (2)
O3	0.32723 (11)	0.86872 (11)	0.33719 (6)	0.0250 (2)
O4	0.80054 (11)	0.48938 (11)	0.36252 (7)	0.0264 (2)
O5	0.55693 (11)	0.47164 (14)	0.36810 (8)	0.0370 (3)
O6	0.70944 (15)	0.65439 (13)	0.44643 (8)	0.0395 (3)
N1	-0.23863 (12)	0.23077 (12)	0.23824 (7)	0.0189 (2)
N2	-0.17444 (12)	0.05714 (13)	0.14645 (7)	0.0211 (2)
N3	0.09014 (12)	0.61176 (12)	0.43150 (7)	0.0176 (2)
N4	0.33476 (12)	0.62438 (12)	0.44885 (7)	0.0174 (2)
N5	0.36487 (13)	0.63293 (12)	0.22864 (7)	0.0195 (2)
N6	0.31324 (13)	0.43181 (13)	0.13275 (7)	0.0198 (2)
N7	0.07227 (12)	0.38082 (12)	0.28051 (7)	0.0170 (2)
N8	0.21321 (13)	0.93021 (13)	0.32878 (7)	0.0203 (2)
N9	0.68763 (13)	0.53995 (13)	0.39242 (7)	0.0225 (2)
C1	-0.37391 (15)	0.14343 (14)	0.19857 (8)	0.0182 (3)
C2	-0.52618 (15)	0.14841 (16)	0.21100 (9)	0.0228 (3)
H2A	-0.5549	0.2226	0.2520	0.027*
C3	-0.63329 (15)	0.03933 (16)	0.16042 (9)	0.0237 (3)
H3A	-0.7386	0.0385	0.1670	0.028*
C4	-0.59187 (16)	-0.06976 (16)	0.09986 (9)	0.0248 (3)
H4A	-0.6695	-0.1418	0.0660	0.030*
C5	-0.44094 (16)	-0.07550 (16)	0.08808 (9)	0.0251 (3)
H5A	-0.4123	-0.1499	0.0472	0.030*
C6	-0.33291 (14)	0.03357 (15)	0.13940 (8)	0.0188 (3)
C7	-0.12222 (15)	0.17477 (14)	0.20604 (8)	0.0179 (3)
C8	0.04170 (14)	0.22638 (14)	0.23621 (9)	0.0189 (3)
H8A	0.0697	0.1603	0.2756	0.023*
H8B	0.1057	0.2190	0.1865	0.023*
C9	0.19329 (14)	0.40230 (14)	0.34832 (8)	0.0184 (3)
H9A	0.2919	0.4008	0.3220	0.022*
H9B	0.1729	0.3183	0.3815	0.022*
C10	0.20520 (14)	0.54612 (14)	0.40762 (8)	0.0167 (2)

C11	0.30374 (14)	0.74700 (14)	0.50206 (8)	0.0176 (3)
C12	0.39816 (15)	0.86314 (15)	0.55629 (9)	0.0218 (3)
H12A	0.5049	0.8685	0.5640	0.026*
C13	0.32688 (17)	0.97029 (16)	0.59821 (9)	0.0257 (3)
H13A	0.3869	1.0523	0.6358	0.031*
C14	0.16882 (16)	0.96283 (16)	0.58755 (9)	0.0244 (3)
H14A	0.1253	1.0392	0.6183	0.029*
C15	0.07526 (15)	0.84738 (15)	0.53349 (8)	0.0208 (3)
H15A	-0.0315	0.8421	0.5259	0.025*
C16	0.14675 (14)	0.73898 (14)	0.49072 (8)	0.0173 (3)
C17	0.09618 (14)	0.49279 (14)	0.22158 (8)	0.0185 (3)
H17A	0.0746	0.5882	0.2511	0.022*
H17B	0.0227	0.4578	0.1711	0.022*
C18	0.25514 (15)	0.52073 (14)	0.19152 (8)	0.0181 (3)
C19	0.46906 (15)	0.48775 (15)	0.13232 (8)	0.0192 (3)
C20	0.58288 (16)	0.43787 (16)	0.08460 (9)	0.0237 (3)
H20A	0.5605	0.3513	0.0419	0.028*
C21	0.72911 (16)	0.52014 (17)	0.10235 (9)	0.0250 (3)
H21A	0.8094	0.4899	0.0708	0.030*
C22	0.76262 (16)	0.64709 (16)	0.16559 (9)	0.0247 (3)
H22A	0.8653	0.6999	0.1765	0.030*
C23	0.65013 (16)	0.69746 (15)	0.21250 (9)	0.0228 (3)
H23A	0.6728	0.7837	0.2554	0.027*
C24	0.50187 (15)	0.61558 (14)	0.19387 (8)	0.0190 (3)
H4N	0.4215 (13)	0.6001 (19)	0.4400 (11)	0.032 (5)*
H1N	-0.227 (2)	0.3081 (15)	0.2784 (10)	0.041 (5)*
H2N	-0.121 (2)	0.0014 (19)	0.1165 (11)	0.043 (5)*
H3N	-0.0046 (12)	0.580 (2)	0.4113 (12)	0.041 (5)*
H5N	0.346 (2)	0.7090 (16)	0.2639 (11)	0.047 (6)*
H6N	0.263 (2)	0.3528 (16)	0.0987 (11)	0.043 (5)*
O7	0.02490 (14)	-0.30337 (14)	-0.02717 (8)	0.0398 (3)
O8	0.02242 (11)	-0.12078 (12)	0.07496 (7)	0.0311 (3)
09	-0.16701 (12)	-0.19196 (12)	-0.01998 (7)	0.0287 (2)
N10	-0.03802 (13)	-0.20607 (13)	0.00941 (7)	0.0221 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0259 (5)	0.0319 (6)	0.0470 (7)	0.0034 (5)	-0.0091 (5)	-0.0065 (5)
O2	0.0341 (6)	0.0190 (5)	0.0359 (6)	0.0113 (4)	0.0015 (5)	-0.0041 (4)
O3	0.0276 (5)	0.0216 (5)	0.0270 (5)	0.0127 (4)	-0.0016 (4)	-0.0011 (4)
O4	0.0135 (4)	0.0282 (5)	0.0353 (6)	0.0080 (4)	0.0015 (4)	-0.0072 (4)
O5	0.0134 (5)	0.0479 (7)	0.0496 (7)	0.0061 (5)	-0.0002 (4)	0.0077 (6)
O6	0.0485 (7)	0.0303 (6)	0.0397 (7)	0.0162 (5)	0.0092 (5)	-0.0071 (5)
N1	0.0154 (5)	0.0180 (5)	0.0216 (5)	0.0031 (4)	0.0003 (4)	-0.0015 (4)
N2	0.0153 (5)	0.0207 (6)	0.0248 (6)	0.0033 (4)	0.0014 (4)	-0.0043 (5)
N3	0.0137 (5)	0.0188 (5)	0.0194 (5)	0.0035 (4)	0.0002 (4)	0.0001 (4)
N4	0.0140 (5)	0.0185 (5)	0.0198 (5)	0.0056 (4)	0.0007 (4)	0.0000 (4)

N5	0.0198 (5)	0.0162 (5)	0.0208 (5)	0.0030 (4)	0.0018 (4)	-0.0015 (4)
N6	0.0175 (5)	0.0204 (6)	0.0196 (5)	0.0036 (5)	0.0005 (4)	-0.0028 (4)
N7	0.0136 (5)	0.0157 (5)	0.0205 (5)	0.0034 (4)	-0.0003 (4)	-0.0014 (4)
N8	0.0216 (6)	0.0196 (5)	0.0202 (5)	0.0060 (5)	0.0023 (4)	0.0022 (4)
N9	0.0190 (5)	0.0256 (6)	0.0250 (6)	0.0085 (5)	0.0036 (4)	0.0044 (5)
C1	0.0172 (6)	0.0166 (6)	0.0203 (6)	0.0026 (5)	-0.0005 (5)	0.0022 (5)
C2	0.0192 (6)	0.0239 (7)	0.0257 (7)	0.0076 (5)	0.0017 (5)	0.0010 (5)
C3	0.0150 (6)	0.0273 (7)	0.0296 (7)	0.0050 (5)	0.0009 (5)	0.0063 (6)
C4	0.0189 (6)	0.0263 (7)	0.0260 (7)	0.0000 (6)	-0.0046 (5)	0.0008 (6)
C5	0.0205 (6)	0.0248 (7)	0.0259 (7)	0.0019 (6)	-0.0010 (5)	-0.0050 (5)
C6	0.0151 (6)	0.0196 (6)	0.0215 (6)	0.0034 (5)	0.0005 (5)	0.0030 (5)
C7	0.0171 (6)	0.0159 (6)	0.0199 (6)	0.0029 (5)	0.0020 (5)	0.0010 (5)
C8	0.0140 (6)	0.0173 (6)	0.0236 (6)	0.0034 (5)	0.0000 (5)	-0.0026 (5)
C9	0.0169 (6)	0.0167 (6)	0.0210 (6)	0.0054 (5)	-0.0005 (5)	-0.0010 (5)
C10	0.0160 (6)	0.0179 (6)	0.0168 (6)	0.0049 (5)	0.0006 (5)	0.0026 (5)
C11	0.0175 (6)	0.0191 (6)	0.0163 (6)	0.0043 (5)	0.0019 (5)	0.0021 (5)
C12	0.0177 (6)	0.0235 (7)	0.0218 (6)	0.0019 (5)	-0.0005 (5)	-0.0008 (5)
C13	0.0253 (7)	0.0232 (7)	0.0246 (7)	0.0026 (6)	-0.0013 (5)	-0.0056 (5)
C14	0.0267 (7)	0.0230 (7)	0.0232 (7)	0.0092 (6)	0.0035 (5)	-0.0027 (5)
C15	0.0188 (6)	0.0230 (7)	0.0218 (6)	0.0073 (5)	0.0041 (5)	0.0025 (5)
C16	0.0167 (6)	0.0179 (6)	0.0170 (6)	0.0031 (5)	0.0015 (5)	0.0019 (5)
C17	0.0161 (6)	0.0179 (6)	0.0210 (6)	0.0052 (5)	0.0000 (5)	-0.0007 (5)
C18	0.0184 (6)	0.0174 (6)	0.0185 (6)	0.0043 (5)	0.0000 (5)	0.0018 (5)
C19	0.0176 (6)	0.0203 (6)	0.0193 (6)	0.0031 (5)	0.0006 (5)	0.0023 (5)
C20	0.0240 (7)	0.0245 (7)	0.0219 (6)	0.0073 (6)	0.0027 (5)	-0.0020 (5)
C21	0.0212 (7)	0.0308 (7)	0.0252 (7)	0.0093 (6)	0.0046 (5)	0.0056 (6)
C22	0.0172 (6)	0.0270 (7)	0.0297 (7)	0.0023 (6)	0.0007 (5)	0.0062 (6)
C23	0.0209 (6)	0.0199 (6)	0.0263 (7)	0.0027 (5)	0.0007 (5)	0.0008 (5)
C24	0.0203 (6)	0.0185 (6)	0.0186 (6)	0.0052 (5)	0.0019 (5)	0.0027 (5)
07	0.0381 (6)	0.0415 (7)	0.0384 (6)	0.0190 (5)	0.0028 (5)	-0.0135 (5)
08	0.0211 (5)	0.0365 (6)	0.0292 (5)	0.0039 (4)	-0.0023 (4)	-0.0127 (4)
09	0.0237 (5)	0.0295 (5)	0.0298 (5)	0.0071 (4)	-0.0061 (4)	-0.0058 (4)
N10	0.0201 (5)	0.0225 (6)	0.0213 (6)	0.0022 (5)	0.0042 (4)	-0.0026 (4)

Geometric parameters (Å, °)

O1—N8	1.2380 (16)	C5—C6	1.3914 (18)
O2—N8	1.2367 (15)	С5—Н5А	0.9500
O3—N8	1.2717 (15)	С7—С8	1.4908 (17)
O4—N9	1.2694 (14)	C8—H8A	0.9900
O5—N9	1.2355 (16)	C8—H8B	0.9900
O6—N9	1.2349 (16)	C9—C10	1.4907 (17)
N1—C7	1.3332 (16)	С9—Н9А	0.9900
N1—C1	1.3897 (16)	С9—Н9В	0.9900
N1—H1N	0.869 (9)	C11—C12	1.3883 (18)
N2—C7	1.3254 (17)	C11—C16	1.3966 (18)
N2—C6	1.3907 (16)	C12—C13	1.379 (2)
N2—H2N	0.869 (9)	C12—H12A	0.9500
N3—C10	1.3301 (16)	C13—C14	1.406 (2)

N3—C16	1.3874 (16)	C13—H13A	0.9500
N3—H3N	0.874 (9)	C14—C15	1.3801 (19)
N4—C10	1.3333 (16)	C14—H14A	0.9500
N4—C11	1.3859 (16)	C15—C16	1.3940 (18)
N4—H4N	0.859 (9)	C15—H15A	0.9500
N5—C18	1.3301 (17)	C17—C18	1.5016 (17)
N5—C24	1.3877 (17)	C17—H17A	0.9900
N5—H5N	0.876 (9)	C17—H17B	0.9900
N6—C18	1.3338 (17)	C19—C24	1.3900 (18)
N6—C19	1.3906 (17)	C19—C20	1.3959 (18)
N6—H6N	0.873 (9)	C20—C21	1.377 (2)
N7—C8	1.4618 (16)	C20—H20A	0.9500
N7—C9	1.4621 (16)	C21—C22	1.400 (2)
N7—C17	1.4795 (16)	C21—H21A	0.9500
C1—C6	1.3870 (18)	C22—C23	1.381 (2)
C1—C2	1.3918 (18)	C22—H22A	0.9500
C2—C3	1.382 (2)	C23—C24	1.3923 (19)
C2—H2A	0.9500	C23—H23A	0.9500
C3—C4	1.397 (2)	O7—N10	1.2334 (16)
С3—НЗА	0.9500	O8—N10	1.2422 (15)
C4—C5	1.3796 (19)	O9—N10	1.2671 (15)
C4—H4A	0.9500		
C7—N1—C1	108.62 (11)	С10—С9—Н9А	109.1
C7—N1—H1N	123.1 (13)	N7—C9—H9B	109.1
C1—N1—H1N	128.3 (13)	С10—С9—Н9В	109.1
C7—N2—C6	108.74 (11)	Н9А—С9—Н9В	107.9
C7—N2—H2N	127.1 (13)	N3—C10—N4	109.55 (11)
C6—N2—H2N	124.1 (13)	N3—C10—C9	126.25 (11)
C10—N3—C16	108.76 (11)	N4—C10—C9	124.10 (11)
C10—N3—H3N	124.8 (13)	N4—C11—C12	131.68 (12)
C16—N3—H3N	126.5 (13)	N4—C11—C16	106.07 (11)
C10—N4—C11	109.06 (11)	C12—C11—C16	122.23 (12)
C10—N4—H4N	122.4 (12)	C13—C12—C11	115.64 (13)
C11—N4—H4N	128.5 (12)	C13—C12—H12A	122.2
C18—N5—C24	108.72 (11)	C11—C12—H12A	122.2
C18—N5—H5N	122.6 (14)	C12—C13—C14	122.55 (13)
C24—N5—H5N	128.2 (14)	C12—C13—H13A	118.7
C18—N6—C19	108.57 (11)	C14—C13—H13A	118.7
C18—N6—H6N	126.8 (13)	C15-C14-C13	121.68 (13)
C19—N6—H6N	124.7 (13)	C15—C14—H14A	119.2
C8—N7—C9	110.26 (10)	C13—C14—H14A	119.2
C8—N7—C17	113.30 (10)	C14—C15—C16	116.02 (12)
C9—N7—C17	114.46 (10)	C14—C15—H15A	122.0
O2—N8—O1	121.43 (12)	C16—C15—H15A	122.0
O2—N8—O3	118.84 (11)	N3—C16—C15	131.56 (12)
O1—N8—O3	119.73 (11)	N3—C16—C11	106.56 (11)
O6—N9—O5	120.93 (12)	C15—C16—C11	121.87 (12)
O6—N9—O4	119.88 (12)	N7—C17—C18	113.13 (10)
O5—N9—O4	119.17 (12)	N7—C17—H17A	109.0

C6—C1—N1	106.39 (11)	C18—C17—H17A	109.0
C6—C1—C2	121.54 (12)	N7—C17—H17B	109.0
N1—C1—C2	132.03 (12)	C18—C17—H17B	109.0
C3—C2—C1	116.25 (13)	H17A—C17—H17B	107.8
C3—C2—H2A	121.9	N5-C18-N6	109.73 (11)
C1—C2—H2A	121.9	N5-C18-C17	123.04 (12)
C2—C3—C4	122.15 (13)	N6—C18—C17	126.80 (12)
С2—С3—НЗА	118.9	C24—C19—N6	106.41 (11)
С4—С3—НЗА	118.9	C24—C19—C20	121.45 (12)
C5—C4—C3	121.58 (13)	N6-C19-C20	132.15 (12)
C5—C4—H4A	119.2	C21—C20—C19	116.78 (13)
C3—C4—H4A	119.2	C21—C20—H20A	121.6
C4—C5—C6	116.35 (13)	C19—C20—H20A	121.6
С4—С5—Н5А	121.8	C20—C21—C22	121.76 (13)
С6—С5—Н5А	121.8	C20-C21-H21A	119.1
C1—C6—N2	106.50 (11)	C22-C21-H21A	119.1
C1—C6—C5	122.10 (12)	C23—C22—C21	121.64 (13)
N2—C6—C5	131.38 (13)	C23—C22—H22A	119.2
N2	109.74 (11)	C21—C22—H22A	119.2
N2—C7—C8	124.00 (11)	C22—C23—C24	116.70 (13)
N1—C7—C8	126.08 (11)	С22—С23—Н23А	121.7
N7—C8—C7	111.44 (10)	C24—C23—H23A	121.7
N7—C8—H8A	109.3	N5-C24-C19	106.57 (11)
С7—С8—Н8А	109.3	N5-C24-C23	131.74 (12)
N7—C8—H8B	109.3	C19—C24—C23	121.66 (12)
С7—С8—Н8В	109.3	O7—N10—O8	121.37 (12)
H8A—C8—H8B	108.0	O7—N10—O9	119.80 (12)
N7—C9—C10	112.30 (10)	O8—N10—O9	118.84 (11)
N7—C9—H9A	109.1		
C7—N1—C1—C6	-1.23 (14)	C11—C12—C13—C14	0.4 (2)
C7—N1—C1—C2	176.57 (14)	C12-C13-C14-C15	-0.5 (2)
C6—C1—C2—C3	-0.8 (2)	C13-C14-C15-C16	0.3 (2)
N1—C1—C2—C3	-178.35 (13)	C10-N3-C16-C15	178.43 (13)
C1—C2—C3—C4	-0.2 (2)	C10-N3-C16-C11	-0.29 (14)
C2—C3—C4—C5	0.8 (2)	C14—C15—C16—N3	-178.53 (13)
C3—C4—C5—C6	-0.3 (2)	C14—C15—C16—C11	0.03 (19)
N1—C1—C6—N2	0.92 (14)	N4-C11-C16-N3	0.22 (13)
C2-C1-C6-N2	-177.16 (12)	C12-C11-C16-N3	178.73 (12)
N1-C1-C6-C5	179.44 (12)	N4-C11-C16-C15	-178.66 (12)
C2—C1—C6—C5	1.4 (2)	C12-C11-C16-C15	-0.1 (2)
C7—N2—C6—C1	-0.30 (15)	C8—N7—C17—C18	-81.34 (13)
C7—N2—C6—C5	-178.63 (14)	C9—N7—C17—C18	46.25 (14)
C4—C5—C6—C1	-0.7 (2)	C24—N5—C18—N6	-1.14 (15)
C4—C5—C6—N2	177.38 (14)	C24—N5—C18—C17	171.75 (12)
C6—N2—C7—N1	-0.48 (15)	C19—N6—C18—N5	0.82 (15)
C6—N2—C7—C8	174.92 (12)	C19—N6—C18—C17	-171.74 (12)
C1—N1—C7—N2	1.07 (15)	N7—C17—C18—N5	-95.69 (14)
C1—N1—C7—C8	-174.21 (12)	N7—C17—C18—N6	75.95 (17)
C9—N7—C8—C7	147.42 (11)	C18—N6—C19—C24	-0.18 (14)

C17—N7—C8—C7	-82.83 (13)	C18—N6—C19—C20	179.29 (14)
N2	162.01 (12)	C24—C19—C20—C21	0.9 (2)
N1—C7—C8—N7	-23.35 (18)	N6-C19-C20-C21	-178.50 (14)
C8—N7—C9—C10	-167.25 (10)	C19—C20—C21—C22	0.5 (2)
C17—N7—C9—C10	63.62 (13)	C20—C21—C22—C23	-1.0 (2)
C16—N3—C10—N4	0.25 (14)	C21—C22—C23—C24	0.1 (2)
C16—N3—C10—C9	176.69 (12)	C18—N5—C24—C19	1.00 (15)
C11—N4—C10—N3	-0.11 (14)	C18—N5—C24—C23	-176.96 (14)
C11—N4—C10—C9	-176.64 (11)	N6-C19-C24-N5	-0.49 (14)
N7—C9—C10—N3	34.37 (17)	C20-C19-C24-N5	179.97 (12)
N7—C9—C10—N4	-149.68 (12)	N6-C19-C24-C23	177.72 (12)
C10-N4-C11-C12	-178.39 (13)	C20-C19-C24-C23	-1.8 (2)
C10-N4-C11-C16	-0.07 (14)	C22—C23—C24—N5	178.97 (14)
N4-C11-C12-C13	178.02 (13)	C22—C23—C24—C19	1.3 (2)
C16—C11—C12—C13	-0.07 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1N···O4 ⁱ	0.87 (2)	1.95 (2)	2.8147 (15)	176.(2)
N2—H2N…O8	0.87 (2)	1.94 (2)	2.7891 (15)	167.(2)
N3—H3N···O4 ⁱ	0.88 (1)	1.87(1)	2.7382 (15)	172.(2)
N2—H2N…O9	0.87 (2)	2.56 (2)	3.2396 (16)	136.(2)
N5—H5N…O3	0.88 (2)	1.77 (2)	2.6477 (15)	175.(2)
N4—H4N···O5	0.86(1)	2.10 (2)	2.8793 (16)	150.(2)
N4—H4N···O6	0.86(1)	2.52 (1)	3.3127 (18)	153.(2)
С5—Н5А…О9	0.95	2.54	3.2922 (18)	136
C8—H8A···O2 ⁱⁱ	0.99	2.32	3.2585 (17)	159
C9—H9B···O2 ⁱⁱ	0.99	2.47	3.2500 (16)	135
C13—H13A···O3 ⁱⁱⁱ	0.95	2.52	3.2240 (18)	131

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*+2, -*z*+1.

